

Tissue & Cell Engineering Society Conference

June 18-20th 2025

Trends in Biotechnology

Contents

Welcome from Conference Chair	Page 2
Venue Information	Page 3
Conference Agenda	Page 4-7
Information for Poster Presenters	Page 7
Sponsor Adverts	Page 8-17
Poster Sessions	Page 18-19

Welcome from the Conference Chair

Dear delegates,

It is my great pleasure to be chairing **TCES 2025**, and on behalf of the local organizing committee, I take this opportunity to warmly welcome you all to the city of Bristol this June. We have chosen to host this meeting in the **City Hall**, a Bristol landmark at the bottom of the historic Park Street, sitting adjacent to the beautiful College Green and Bristol Cathedral. We hope that this setting provides an inspiring backdrop for three exciting days of science!

I would like to extend our heartfelt thanks to our distinguished keynote speakers, Professor Marcy Zenobi Wong, Professor Alvaro Mata, Professor Vivian Li, and Professor Massimo Caputo. They each bring a wealth of experience across our four themes: enabling technologies, advanced biomaterials, *in vitro* modelling, and clinical tissue engineering, and we are looking forward to hearing their latest discoveries! This year, we have also invited a previous recipient of the TCES Robert Brown Award, Dr Sam Moxon, who will deliver a keynote talk on his journey in academia and industry. We hope that this will complement our meet-the-mentor initiative to provide guidance to our large network of early career researchers. We were delighted to see a large number of abstracts submitted by the tissue and cell engineering community – thank you to the TCES Committee and our Scientific Advisory Board for judging. We are very much looking forward to seeing all of this science on display in the form of podium talks and poster presentations.

Conferences are not all about the science though! We have made sure to build in plenty of breakout time to refuel with caffeine and snacks, and speak with other delegates. Please do also take this opportunity to engage with our sponsors and exhibitors, without whom the conference would not be possible. Last but not least, we have lined up two big networking events: an open drinks reception and DJ set at **Illuminati** on the 18th June and a ticketed dinner and social at the **Bristol Hotel** on the 19th June.

Looking forward to meeting you on the 18th June!

Dr James Armstrong

TCES 2025 Conference Chair

Venue Information

The venues are all located in central Bristol and in close proximity to Temple Meads Train Station. All scientific sessions will be held in the **City Hall** – to enter, please walk up the approach ramp opposite Unity Street and enter *via* the main entrance:

When entering through the main entrance, you will be in the **City Hall Foyer**, where registration will be held alongside posters and refreshments. Opposite the main entrance is the **Queen Elizabeth II Conference Hall**, which will have the scientific talks, exhibitors, posters, and refreshments. To the left of the main entrance is the **Lord Mayor's Reception Room**, in which food will be served. Toilet facilities are available at either end of the foyer.

Wednesday 18th June

12:00 - 13:20	Registration in the City Hall Foyer Lunch served in the Lord Mayor's Reception Room Poster Set Up (Group 1) in the City Hall Foyer and Queen Elizabeth II Conference Hall		
SESS	SESSION 1: ENABLING TECHNOLOGIES - QUEEN ELIZABETH II CONFERENCE HALL Chairs: James Armstrong, Mina Aleemardani		
13:20 - 13:30	James Armstrong University of Bristol	Opening Remarks	
	Sarah Cartmell University of Manchester		
13:30 – 14:12	Marcy Zenobi-Wong ETH Zürich	Keynote Talk: Engineering tissues with architected scaffolds	
14:12 – 14:24	Emily Atkinson University College London	An immunomodulatory encapsulation system promotes the survival of hiPSC-derived dopaminergic neurons against T cell-mediated death	
14:24 – 14:36	Zahra Kafrashian Saarland University	Light-guided drug delivery: multimaterial waveguide biofabrication for remote bacteria activation	
14:36 – 14:48	Ioanna Rigou University of Glasgow	Nanovibrational control for chondrogenic differentiation	
14:48 – 14:54	Dammy Olayanju PeptiMatrix	Sponsor Talk: PeptiMatrix	
14:54 – 15:00	Rania Deranieh Bright Biotech	Sponsor Talk: Bright Biotech	
15:00 – 16:00	:00 – 16:00 Refreshments & Posters (Group 1) in the City Hall Foyer and Queen Elizabeth II Conference Hall		
SESSION 2: ENABLING TECHNOLOGIES - QUEEN ELIZABETH II CONFERENCE HALL Chairs: Farnaz Ghorbani, Mina Aleemardani			
16:00 - 16:12	Mallica Pandya University College London	Engineering shape changing light-activated tissues	
16:12 – 16:24	Sam Shorthouse University of Bristol	Development of an automated workflow for the characterization and ranking of neural organoid morphology	
16:24 – 16:30	Matthew Reynolds Thermo Fisher Scientific	Sponsor Talk: Thermo Fisher Scientific	
16:30 - 16:42	Tiangyang Liu University College London	Development of lipid nanoparticles to deliver mRNA into Schwann cells to facilitate nerve regeneration	
16:42 – 16:48	Darren Heywood Promega	Sponsor Talk: Promega	
16:48 – 17:00	Jinju Chen Loughborough University	Computational tissue engineering to predict cell-biomaterials interactions	
17:00 – 17:20	Holly Gregory University College London	Robert Brown Award Shortlist: Delivery of small molecules and growth factors from microparticles and nanofibrous scaffolds for nervous system repair	
17:30 – 19:00	Drinks & Buffet Reception & Meet the Mentor Event at Illuminati		

Thursday 19th June - Morning

SESSION 3: ADVANCED BIOMATERIALS - QUEEN ELIZABETH II CONFERENCE HALL Chairs: Fengyuan Liu, Zhipeng Deng		
09:00 - 09:42	Sam Moxon Aegis FibreTech LTD	Keynote Talk: From lab to launch: a journey from academia to advanced materials entrepreneurship
09:42 – 09:54	Laura Sabio University of Glasgow	Probiotic-based living materials with inducible antioxidant properties
09:54 – 10:00	Shaun Ryder, Aimee Parsons Merck Life Science	Sponsor Talk: Merck Life Science
10:00 – 10:12	Mingjing Zhang University College London	Systematic characterization of GPTMS-crosslinked chitosan, collagen, and hybrid scaffolds for cartilage tissue engineering
10:12 - 10:18	Akihiro Suto Nikon Healthcare UK	Sponsor Talk: Nikon Healthcare UK
10:18 – 10:30	Robert Owen University of Nottingham	Harnessing geometry to drive tissue formation in three-dimensions
10:30 - 11:10	10:30 – 11:10 Refreshments & Posters (Group 1) in the City Hall Foyer and Queen Elizabeth II Conference Hall	
SESSION 4: ADVANCED BIOMATERIALS - QUEEN ELIZABETH II CONFERENCE HALL Chairs: Wael Kafienah, Zhipeng Deng		
11:10 – 11:22	Nazia Mehrban University of Bath	Smart integrative biomaterials: from regenerative medicine to device envelopes
11:22 - 11:34	Merve Demir University of Nottingham	The re-creation of the intestinal epithelium using induced pluripotent stem cell derived progenitors and 3D bioprinting
11:34 – 11:46	Emma Jackson University of Glasgow	Magnetic hydrogels for bone tissue engineering
11:46 – 11:58	Anabela Moreira University College London	Engineering 3D cellular hydrogels to model dopaminergic neurodegeneration in Parkinson's disease
11:58 – 12:10	Shirin Nour University of Melbourne	The interplay between surface morphology and nanoscale ligand clustering for developing <i>in vitro</i> skeletal muscle tissue models and forming neuromuscular junctions
12:10 – 12:40	Annual General Meeting	Including details of the TCES 2026 Conference
12:40 – 13:15	Lunch served in the Lord Mayor's Reception Room Posters (Group 1) in the City Hall Foyer and Queen Elizabeth II Conference Hall	
13:15 – 13:50	Lunch served in the Lord Mayor's Reception Room Posters (Group 2) in the City Hall Foyer and Queen Elizabeth II Conference Hall	

Thursday 19th June - Afternoon

SESSION 5: ADVANCED BIOMATERIALS - QUEEN ELIZABETH II CONFERENCE HALL Chairs: Deepali Pal, Norah-Jane Prendergast		
13:50 – 14:32	Alvaro Mata University of Nottingham	Keynote Talk: Tissue engineering with bioinspired and biocooperative strategies
14:32 – 14:44	Kozim Midkhatov University of Manchester	Engineered topographically textured micromaterials modulate doxorubicin response in 3D osteosarcoma models: a design of experiments approach
14:44 – 14:56	Ayda Farhoudi University of Melbourne	Determining the geometric factors governing the growth of mesenchymal cells into a 3D structure
14:56 – 15:08	Fatmah Ghuloum University of Manchester	Mechanobiological insights into hedgehog signalling-mediated osteogenesis on engineered 3D topographies: a transcriptomic analysis and translational application
15:08 – 15:20	Andrew Johnston University of Edinburgh	Influence of shear stress on vascular cell types on electrospun scaffolds featuring modified fiber topography via a 3D printed bioreactor
15:20 – 16:00	Refreshments & Posters (Group	2) in the City Hall Foyer and Queen Elizabeth II Conference Hall
SESSION 6: <i>IN VITRO</i> MODELS - QUEEN ELIZABETH II CONFERENCE HALL Chairs: Oscar Cordero Llana, Norah-Jane Prendergast		
16:00 – 16:12	Sneha Ravi University of Edinburgh	Development of a novel ureter model to investigate urinary tract infections
16:12 – 16:24	Eve Tipple University of Manchester	Development of <i>in vitro</i> bladder cancer models to investigate the effects of hypoxia on the tumour microenvironment
16:24 – 16:36	Emmanouela Mitta University College London	A systematic comparative evaluation of the therapeutic efficiency of novel proton beam and conventional photon radiotherapy on advanced multicellular 3D models of pancreatic cancer
16:36 – 16:48	Erly Raras Savitri University of Bristol	Generation of human iPSC-derived lung organoid as a model for SARS-CoV-2 infection
16:48 – 17:00	Kenza Sackho University of Surrey	Development and characterization of a 3D epicardial cardiac model
17:00 – 17:12	Rebecca Downs-Ford University of Manchester	3D bioprinting of bilayered skin models using dextran-based hydrogels
17:12 – 17:24	Meghna Suvarna University of Sheffield	Development of an in vitro 3D bone-muscle co-culture model using emulsion-templated microporous scaffolds
17:24 – 17:36	Hannah Donnelly University of Glasgow	Bioengineered niches that recreate physiological bone marrow extracellular matrix organization to support long-term hematopoietic stem cells, model CAR T cell therapy, and support cancer remodeling
17:36 – 18:00	Delegate photograph on College Green outside the City Hall, then a short walk to The Bristol Hotel for those attending the conference dinner.	
18:00 – 19:00	Drinks reception in the Events Lounge of The Bristol Hotel – this is a ticketed event	
19:00 – 23:59	Formal dinner in the Ballroom Suite of The Bristol Hotel – this is a ticketed event	

Friday 20th June

09:00 - 09:30	Refreshments & Posters (Group	2) in the City Hall Foyer and Queen Elizabeth II Conference Hall	
SESSIC	SESSION 7: CLINICAL TISSUE ENGINEERING - QUEEN ELIZABETH II CONFERENCE HALL Chairs: Panos Maghsoudlou, Srividya Sundararajan		
09:30 - 10:12	Vivian Li Francis Crick Institute	Keynote Talk: Engineering intestinal mucosal grafts for transplantation and modelling	
10:12 - 10:24	Caitlin Ryan University of Sheffield	A single-layered angiogenic periosteum substitute to improve delayed bone healing	
10:24 - 10:36	Olivia Camilleri University of Bristol	High-concentration collagen granular hydrogels as an injectable biomaterial for bone regeneration	
10:36 - 10:48	Michalis Palamas University of Nottingham	Gene therapy via haemostatic and tissue restorative wound packing for accelerated healing of soft tissue	
10:48 - 11:00	Justine Clarke University of Glasgow	Engineering the next generation of biologically active vascular grafts	
11:00 - 11:12	Rosanna Hood University of Sheffield	Decalcifying and antibacterial bilayer grafts for vascular tissue engineering	
11:12 - 11:50	1:12 – 11:50 Brunch served in the Lord Mayor's Reception Room Posters (Group 2) in the City Hall Foyer and Queen Elizabeth II Conference Hall		
SESSION 8: CLINICAL TISSUE ENGINEERING - QUEEN ELIZABETH II CONFERENCE HALL Chair: Giovanni Biglino, Srividya Sundararajan			
11:50 – 12:32	Massimo Caputo University of Bristol	Keynote Talk: The clinical need for tissue engineering research in congenital heart disease	
12:32 - 13:00	James Armstrong University of Bristol Sarah Cartmell University of Manchester	Robert Brown Early Stage Investigator Award Poster Prizes Sponsored by <i>Biofabrication</i> Talk Prizes Sponsored by <i>Trends in Biotechnology</i> Closing Remarks	

Information for Presenters

Podium presenters please introduce yourself to the session chair in the 20 minutes before the talk, check that your slides are in order, and take a seat on the front row.

Poster presenters are split into two groups (see page 18-19 for split). Group #1 will have their posters on display for the first half of the conference, Group #2 will have their posters on display for the second half of the conference. **Group #1 please remove their posters promptly at the changeover at 1:15 pm on the 19th June**. Poster judging will take place on the 19th June only - the scientific content, presentation, and ability to describe and discuss the results will be assessed.

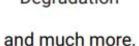
Transforming Science Together

For over 45 years we have been helping scientists find the answers. Going beyond a focus on products, we recognise your challenges and collaborate to develop next-generation solutions and bring a network of diverse ideas to drive better results.

We believe in science-driven solutions and personalised service for real-world settings.

Applications include:

Molecule Drug Discovery


Human Identification

Cell and Gene Therapy

Targeted Protein Degradation

Clinical Diagnostics

Metabolic Diseases

Alex Kirby
Key Account Manager
alex.kirby@promega.com
07920 548851

Scan Here to Learn More

High-quality recombinant proteins backed by over 35 years of protein expertise

Recombinant proteins for discovery through commercial manufacturing

More than 700 recombinant proteins are available, from research to commercial grade, in multiple vial sizes

Quality products manufactured with experience

Every step of the manufacturing process is conducted in-house, resulting in recombinant cytokines and growth factors that can be trusted for quality, consistency, and quality assurance for clinical manufacturing

An exceptional customer experience

Dedicated customer service and technical support teams enable timely responses to your needs

Streamline your path from discovery to delivery with Gibco PeproTech recombinant proteins

Contact: Matthew Reynolds

matthew.reynolds@thermofisher.com +44 (0)7584 430771

Learn more at thermofisher.com/peprotech

NIKON'S SOLUTIONS FOR:

Tissue Imaging

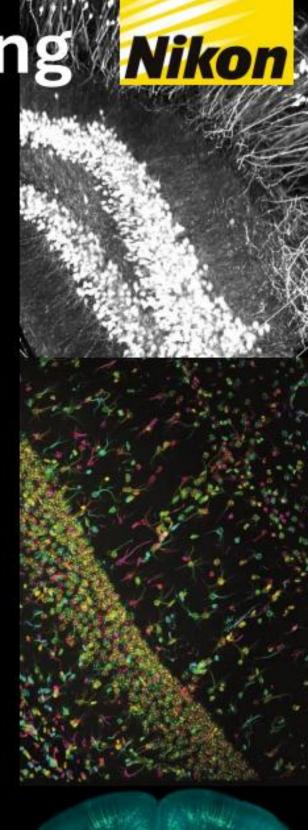
Whole sample in one image

With largest field of view and scanning sizes up to 8192x8192 pixels

More data in less time

Rapid scanning, high resolution imaging experiments

High Throughput


Automated acquisition and analysis workflows to maximise data outputs

Deep Observations

Of 3D samples with sensitive detection and silicone objectives for high resolution imaging at depth

Find out more

Growing a brighter, more sustainable future with plant-made proteins.

Our debut products:

Growth factors for cellular agriculture and regenerative medicine.

Hyper-Expression

Up to 5 grams per kilogram from plant leaves, with stable production in our advanced chloroplast system.

Superior Containment

By harvesting leaves before flowering, we prevent dispersal of seeds. Additionally, our products originate from modified chloroplasts, not spread by polien.

Eco-friendly

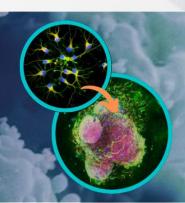
By using light, water, salts, and CO2 for protein expression in chloroplasts, our technology offers a sustainable alternative to traditional fermentation.

Ultra-Scalable

10,000-fold amplification through seeds, our products offer hyper-scalability.

Safety

Our products are free from harmful microbial toxins and animal pathogens.


Affordable

We provide cost-effective products by replacing fermentation in expensive bioreactors by modern scalable farming methods.

TRANSFORM YOUR RESEARCH AND **UNLOCK THE POWER OF 3D**

About Us

We are a team of matrix biologists, cancer scientists, toxicologists, and biomaterial engineers who have worked together to develop an innovative, animal-free solution for 3D cell culture.

Our Technology

Our innovative self-assembling peptide hydrogel platform addresses all the current shortcomings of available in vitro model platforms. Our hydrogels are entirely animalfree, have limited batch-to-batch variability, and can be customised to meet the needs of the user.

Our Mission

Our mission is to eliminate the need for animals and animal-derived materials in scientific research, by providing researchers with more reliable synthetic alternatives.

SCAN TO LEARN MORE:

Or drop us an email:

info@peptimatrix.com

ANIMAL FREE

Our hydrogels are entirely synthetic, for more ethical science.

REPRODUCIBLE

Because they're synthetic, they have limited batch variability.

CUSTOMISABLE.

Stiffness and composition can be customised to mimic different tissues

READY-TO-USE

Supplied ready-to-use and can be handled at room temperature.

VALIDATED

Each formulation is tried and tested across multiple cell types.

VERSATILE

Compatiable with ICC, RNA/DNA extraction, flow cytometry, and more.

MERCK @ TCES 2025

Genuine PlexAbility with MILLIPLEX® Qualified Assays

- Lot-to-lot reproducibility with rigorous QC testing
- Includes key reagents like Quality Controls and Serum Matrix for sample normalization
- Ideal for long-term or cross-site studies
- Broadest selection of analytes across research areas and species
- Configurable, premixed, and bulk kit options to fit your exact research needs

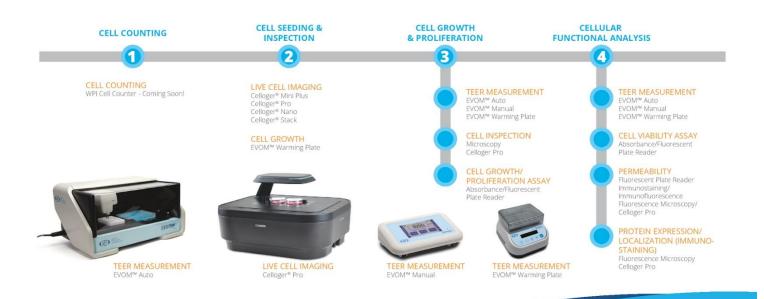
Compelling PlexAbility with MILLIPLEX® Screening Assays

- Save sample, time, and money by profiling up to 115 analytes simultaneously without sacrificing specificity
- Excludes Serum Matrix to create sample agnostic panel for greater flexibility
- Ideal for detecting differences between experimental groups
- Human assay available
- Uses same critical raw materials as Qualified assays

3D Cell Culture:

- Hydrogel
- Scaffolds
- Organoids

Cell Signalling MILLIPLEX® Assays



Comprehensive Solutions

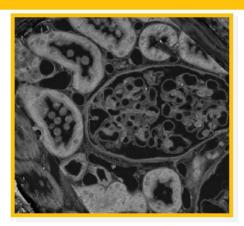
Optimize Your Cell Analysis Workflow with the Leader in TEER Technology

www.wpi-europe.com

From Eye to Insight

CLARITY THROUGH SYNERGY

THUNDER Imager Cell Spinning Disk


- Get a clearer picture by combining the power of THUNDER technology with the CrestOptics CICERO spinning disk.
- Experience fast, versatile confocal imaging of challenging 3D samples.

www.leica-microsystems.com

NANOS The Next Generation Tabletop SEM

Making SEM & EDS accessible for anyone, everywhere

E: contact@lambdaphoto.co.uk

T: +44 (0)1582 764334

Characterisation, Measurement & Analysis

www.lambdaphoto.co.uk

Supporting human relevant research

We fund biomedical researchers to replace the use of animals and animal products in their studies

Keep in touch

- grants@humaneresearch.org.uk
- in the-humane-research-trust
- @humaneresearch.bsky.social

Why animal replacement matters

Poor translation from animals to humans

Animal products in cell and tissue culture can impair reproducibility

Animal models cause suffering

Our grant funding

We believe that human cells and tissue provide the best and most accurate models for human disease.

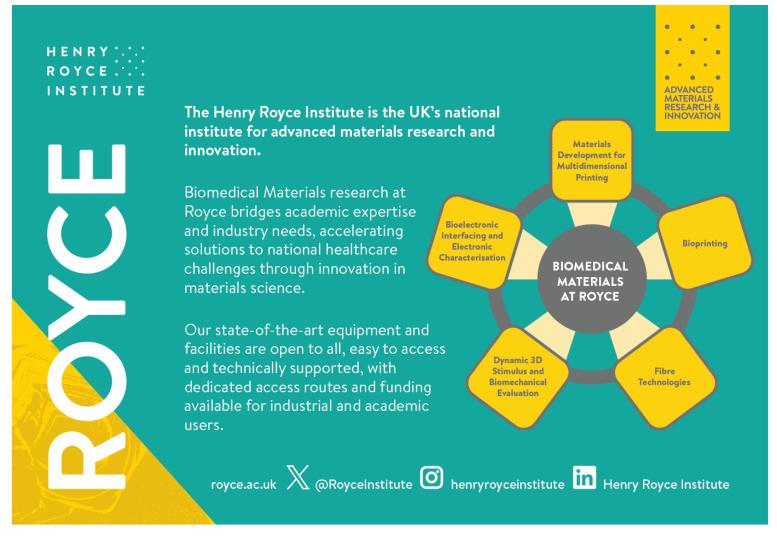
That's why we provide grants for *in vitro* studies that either develop new models, or refine existing models to remove animal-derived products like serums, scaffolds, and antibodies.

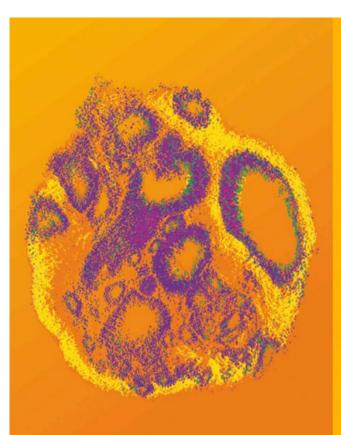
Learn about our grants

Leading the way in 3D bioprinting

Unlock greater insights by leveraging the power of 3D cell culture through award-winning 3D bioprinters and carefully sourced biomaterials and bioinks.

The Bench-Size Microplate Imaging and Analysis Workhorse


Agilent BioTek Cytation C10 confocal imaging reader


From confocal, widefield, and live cell imaging to multimode reading, the Agilent BioTek Cytation C10 confocal imaging reader delivers crisp, high-resolution images and the ability to image and analyze 3D samples. Plus, without having to schedule time at a core lab, you'll have more control over your workflow. Small and powerful – a perfect fit in any lab.

Discover more: explore.agilent.com/cytationC10

For Research Use Only. Not for use in diagnostic procedures. RA.44158.3299537037 © Agilent Technologies, Inc. 2025

INTRODUCING MILTENYI BIOTEC'S

HPSC-DERIVED CEREBRAL ORGANOID WORKFLOW

From differentiation to cellular analysis and 3D imaging

Visit Rachel's stand at the TCES meeting in June to learn how you can gain an in-depth understanding of your in vitro model

www.miltenyibiotec.com

Poster Group #1: 18-19th June

1	An Nicoa Nurzek	Designing glucose recognize non-vivel gane therenice for disheteer a nevel entre
1	An Nisaa Nurzak	Designing glucose-responsive non-viral gene therapies for diabetes: a novel approach to
2	University of Nottingham	insulin regulation and production
2	Udipt Ranjan Das University of Glasgow	Nanovibrational stimulation of mesenchymal stromal cell osteogenesis – investigating the relationship between osteogenesis and inflammation
3	Adel Alshammari	
3	Cardiff University	Evaluating the antimicrobial, mechanical and physiochemical properties of drug-loaded liposomes in resin-based composite
4	Nan Tao	Mechanical stimulation study of 3D printed porous structure on the osseointegration of
	University College London	mandibular prosthesis
5	David Chau	Immortality in a bag: a cold chain-free, animal material-free, and DMSO-free alternative to
	University College London	enhanced cell storage and delivery
6	Lucy Wilkinson	Lupin protein isolates in serum free media development for cultivated meat
	University of Bath	
7	Samira Malekmohammadi	Al-enhanced smart scaffolds for ultrasound-responsive bone regeneration and controlled
	Henry Royce institute	drug delivery
8	Alexandra Medeea Nagy	Capacitive electric stimulation enhances the osteogenic potential of periodontal ligament
	University of Manchester	stem cells
9	Michelle Li	Measurement of ultrasound-responsive microbubble perfusion during non-union bone
	University of Southampton	fracture healing
10	Balint Macsuga	Evaluation of electrostimulation-mediated bone healing using an in vitro model
	University of Manchester	
11	Dariusz Kosk	Perfusion chamber for the investigation of microbubble response to ultrasound and
	University of Southampton	localised drug delivery in bone fractures
12	Emily Atkinson	Linear peptide mimetics of glial cell line-derived neurotrophic factor (GDNF) activate PI3K
	University College London	signalling and have applications in regenerative medicine
13	Thomas Green	Orthopaedic consideration of the influence of laser surface texturing on functional surface
	Cardiff University	properties of bulk metallic glass
14	Farnaz Ghorbani	GelMA–polydopamine bioinks with enhanced printability and mineralization for bone tissue
	University of Bristol	engineering
15	Louis Johnson	An emulsion electrospun nanofibrous scaffold with glial cell line-derived neurotrophic factor
	University of Sheffield	for nerve regeneration
16	Caroline Taylor	Versatile twin layer macromolecular fibres for advanced tissue engineering applications
	University of Leeds	
17	Yanni Lu	Effect of titanium alloy Ti-6Al-4V surface topography on human neutrophil morphological
4.5	Cardiff University	responses
18	Samantha Heslop	The development of a 'functionalised tendon repair augmentation device' using electrospun
	University of Manchester	polycaprolactone
19	Matthew Maple Nottingham Trent University	Effect of laser ablation and nanoparticle deposition on the biocompatibility of PEEK
20	Woming Gao	Enhanced strength, biocompatibility, and printability for artificial bone tissue materials:
20	University of Sheffield	nano-scale investigation into citric acid carbon dots (CA CDs)/polymerized
	Svoroity or offorficta	trimethylolpropane triacrylate (PTMPTA) composites
21	Chrisdina Sari	Fibre-reinforced hydrogel: novel composite biomaterials for dental implant
21	University College London	Tible Tellinoreed Hydroget. Hovet composite biomaterials for defital implant
22	Zeming Cheng	Berberine-loaded PHA electrospun films as potential bone tissue engineering scaffolds
~~	University of Sheffield	20.20.110 todada i intotodioopan itiilo ao potential bone tibbae engineering seanotas
23	Norshazliza Ab Ghani	Next-Gen 3D biocomposite scaffolds: fucoidan-infused PLGA/nCS for bone tissue
	University of Malaya	engineering
24	Mia Crowther	Computational modelling of preterm fetal membranes
	Queen Mary University of London	
25	Genevieve Schleyer	Characterising the effects of protein interactions on nanoparticle diffusion in complex in
	University of Liverpool	vitro environments
26	Mia Massaad	Robust and bioactive double-network GelMA-PDA bioinks for bone tissue engineering
	University of Bristol	

Poster Group #2: 19-20th June

07	Finley Themas	Illtracound voon oneive mierakukklee fav delivere ef Wet westein fav kense keeling
27	Finlay Thomas	Ultrasound-responsive microbubbles for delivery of Wnt protein for bone healing
00	University of Southampton	An axis of What and proinflormators signals underlies may be in all universe at a service.
28	Hussain Jaffery University of Glasgow	An axis of Wnt and proinflammatory signals underlies mechanically driven osteogenesis
20	Lidija Gradisnik	location and characterization of human nucleus nulnesus, annulus fibragus and cartilogs
29	University of Maribor	Isolation and characterisation of human nucleus pulposus, annulus fibrosus and cartilage endplate cells for <i>in vitro</i> cell models
30	Tomaz Velnar	Neurosurgical approaches for harvesting intervertebral disc tissue for cell culture
30	UMC Ljubljana	Neurosurgical approaches for harvesting intervertebrat disc tissue for cell culture
31	Ilyas Khan	The formation of Benninghoff's arcades in immature articular cartilage occurs through
31	Swansea University	reconfiguration of the existing collagen fibril network
32	Zhaoqiang Zhang	Enhancing osteoclastic differentiation of human monocyte cell line THP1 for in vitro bone
32	University of Manchester	resorption modeling
33	Celia Ribes Balanza	Bioengineered 3D hydrogels to model the human bone marrow leukemic niche
33	University of Glasgow	blochgineered ob nydrogets to model the number bone marrow teakenne mene
34	Priyanka Gupta	Evaluating the relevance of dynamic flow on the drug response of a biomimetic advanced
04	University of Roehampton	model of pancreatic cancer
35	Sanaa Alhazaimeh	Understanding the mechanism of pathology induced by type 2 diabetes on stem cells
	University of Leeds	regeneration ability
36	Rachel Wandless	Investigating the migratory capacity of SHED cells in different mechanical environments
	University College London	and the state of t
37	Norah-Jane Prendergast	Impact of matrix viscosity on astrocyte reactivity in 3D tissue models
	University of Bristol	,
38	Antonios Giannopoulos	Impact of tissue architecture on corneal myofibroblasts behaviour in fibrin hydrogels
	Loughborough University	, , , , , , , , , , , , , , , , , , , ,
39	Hannah Donnelly	Bioengineered 3D models of lymph node stroma to understand the biomechanics of
	University of Glasgow	immune ageing
40	Kubra Yigit	Investigating fiber diameter impact for N-acetylcysteine-loaded polycaprolactone scaffolds
	University of Edinburgh	on oxidative stress induced-osteoarthritis
41	Jeyapriya Thimukonda Jegadeesan	Exploring the influence of charge and stiffness on osteosarcoma cell behaviour in tuneable
	University of Manchester	peptigel systems
42	Prarthana Mistry	Development of PolyHIPE Scaffolds as an intervention for medication-related osteonecrosis
	University of Sheffield	of jaw
43	Mina Aleemardani	Polyphenolic granular hydrogels with enhanced shear mechanics
	University of Bristol	
44	Nevena Slavova	Tissue engineered blood vessels
	University of Sheffield	
45	Zhipeng Deng	Coagulative granular hydrogels for endogenous tissue repair
	University of Bristol	
46	Peter Goulding	Developing functionalised electrospun scaffolds to exploit neural–stromal interactions in
	University of Sheffield	wound healing
47	Elliot Amadi	3D printed bacterial cellulose/alginate hydrogel scaffolds, for potential use in chronic
	University of Sheffield	wound therapy
48	Simin Ni	Evaluating the cartilage regeneration after stem cell therapy through MRI segmentation for
40	University College London	predicting clinical outcomes
49	Srividya Sundararajan University of Bristol	Patient-derived ovarian cancer organoids to inform chemotherapy
EO		Nanonartiala anrighad aggeball membranesi an agg college alternative for guided bear
50	Sharon Oyhanart University College London	Nanoparticle-enriched eggshell membranes: an egg-cellent alternative for guided bone regeneration
51	Valeria Sandoval Torres	Exploring artificial membrane-binding proteins for NK cell functionalization
31	University of Bristol	Exploring artificial membrane-binding proteins for the cell functionalization
52	Inmaculada De Dios Pérez	Optimising and evaluating thermosensitive decellularized ECM-based hydrogels for
-	University of Birmingham	enhanced arteriovenous graft integration
	. ,	1